Przejdź do zawartości

Grupa alternująca

Z Wikipedii, wolnej encyklopedii

Grupa alternująca (rzadziej: grupa naprzemienna) – grupa parzystych permutacji pewnego zbioru skończonego[1].

Definicja

[edytuj | edytuj kod]

Grupą alternującą nazywamy jądro homomorfizmu danego wzorem

Dla grupy symetrycznej rzędu mówimy również o grupie alternującej stopnia . Grupę taką oznacza się symbolami lub

Przykłady i własności

[edytuj | edytuj kod]
  • Grupą alternującą stopnia 4 jest
w szczególności grupa ta ma 12 elementów, lecz żaden z nich nie jest rzędu 4 – przykład ten pokazuje, że twierdzenie odwrotne do twierdzenia Lagrange’a jest (w ogólności) fałszywe.
  • Dla grupa jest podgrupą normalną grupy symetrycznej o elementach.
  • Grupa jest przemienna wtedy i tylko wtedy, gdy jest grupą prostą wtedy i tylko wtedy, gdy lub [1].
  • (rzędu 60) jest najmniejszą nierozwiązalną grupą i najmniejszą nieprzemienną grupą prostą.
  • Podgrupa alternująca jest generowana przez wszystkie cykle długości 3 grupy symetrycznej

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. a b grupa prosta, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-03-12].

Bibliografia

[edytuj | edytuj kod]